180 research outputs found

    Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification

    Get PDF
    Previous studies have demonstrated that the use of integrated information from multi-modalities could significantly improve diagnosis of Alzheimer’s Disease (AD). However, feature selection, which is one of the most important steps in classification, is typically performed separately for each modality, which ignores the potential strong inter-modality relationship within each subject. Recent emergence of multi-task learning approach makes the joint feature selection from different modalities possible. However, joint feature selection may unfortunately overlook different yet complementary information conveyed by different modalities. We propose a novel multi-task feature selection method to preserve the complementary inter-modality information. Specifically, we treat feature selection from each modality as a separate task and further impose a constraint for preserving the inter-modality relationship, besides separately enforcing the sparseness of the selected features from each modality. After feature selection, a multi-kernel Support Vector Machine (SVM) is further used to integrate the selected features from each modality for classification. Our method is evaluated using the baseline PET and MRI images of subjects obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our method achieves a good performance, with an accuracy of 94.37% and an Area Under the ROC Curve (AUC) of 0.9724 for AD identification, and also an accuracy of 78.80% and an AUC of 0.8284 for Mild Cognitive Impairment (MCI) identification. Moreover, the proposed method achieves an accuracy of 67.83% and an AUC of 0.6957 for separating between MCI converters and MCI non-converters (to AD). These performances demonstrate the superiority of the proposed method over the state-of-the-art classification methods

    Duration of untreated psychosis is associated with temporal and occipitotemporal gray matter volume decrease in treatment naive schizophrenia

    Get PDF
    BACKGROUND: Long duration of untreated psychosis (DUP) is associated with poor treatment outcome. Whether or not DUP is related to brain gray matter volume abnormalities in antipsychotic medication treatment naive schizophrenia remains unclear at this time. METHODS: Patients with treatment-naive schizophrenia and healthy controls went through brain scan using high resolution Magnetic Resonance Imaging. DUP was evaluated using the Nottingham Onset Schedule (NOS), and dichotomized as short DUP ( 26 weeks). Voxel-based methods were used for volumetric measure in the brain. RESULTS: Fifty-seven patients (27 short DUP and 30 long DUP) and 30 healthy controls were included in the analysis. There were significant gray matter volumetric differences among the 3 groups in bilateral parahippocampus gyri, right superior temporal gyrus, left fusiform gyrus, left middle temporal gyrus, and right superior frontal gyrus (p\u27s \u3c 0.01). Compared with healthy controls, the long DUP group had significantly smaller volume in all these regions (p\u27s \u3c 0.05). Compared with the short-DUP group, the long-DUP group had significantly smaller volume in right superior temporal gyrus, left fusiform gyrus, and left middle temporal gyrus (p\u27s \u3c 0.01). CONCLUSION: Our findings suggest that DUP is associated with temporal and occipitotemporal gray matter volume decrease in treatment naive schizophrenia. The brain structural changes in untreated psychosis might contribute to poor treatment response and long-term prognosis in this patient population

    Performing group-level functional image analyses based on homologous functional regions mapped in individuals

    Get PDF
    Functional MRI (fMRI) studies have traditionally relied on intersubject normalization based on global brain morphology, which cannot establish proper functional correspondence between subjects due to substantial intersubject variability in functional organization. Here, we reliably identified a set of discrete, homologous functional regions in individuals to improve intersubject alignment of fMRI data. These functional regions demonstrated marked intersubject variability in size, position, and connectivity. We found that previously reported intersubject variability in functional connectivity maps could be partially explained by variability in size and position of the functional regions. Importantly, individual differences in network topography are associated with individual differences in task-evoked activations, suggesting that these individually specified regions may serve as the localizer to improve the alignment of task-fMRI data. We demonstrated that aligning task-fMRI data using the regions derived from resting state fMRI may lead to increased statistical power of task-fMRI analyses. In addition, resting state functional connectivity among these homologous regions is able to capture the idiosyncrasies of subjects and better predict fluid intelligence (gF) than connectivity measures derived from group-level brain atlases. Critically, we showed that not only the connectivity but also the size and position of functional regions are related to human behavior. Collectively, these findings suggest that identifying homologous functional regions across individuals can benefit a wide range of studies in the investigation of connectivity, task activation, and brain-behavior associations. Author summary No two individuals are alike. The size, shape, position, and connectivity patterns of brain functional regions can vary drastically between individuals. While interindividual differences in functional organization are well recognized, to date, standard procedures for functional neuroimaging research still rely on aligning different subjects' data to a nominal average brain based on global brain morphology. We developed an approach to reliably identify homologous functional regions in each individual and demonstrated that aligning data based on these homologous functional regions can significantly improve the study of resting state functional connectivity, task-fMRI activations, and brain-behavior associations. Moreover, we showed that individual differences in size, position, and connectivity of brain functional regions are dissociable, and each can provide nonredundant information in explaining human behavior

    Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder.

    Get PDF
    Time-invariant resting-state functional connectivity studies have illuminated the crucial role of the right anterior insula (rAI) in prominent social impairments of autism spectrum disorder (ASD). However, a recent dynamic connectivity study demonstrated that rather than being stationary, functional connectivity patterns of the rAI vary significantly across time. The present study aimed to explore the differences in functional connectivity in dynamic states of the rAI between individuals with ASD and typically developing controls (TD). Resting-state functional magnetic resonance imaging data obtained from a publicly available database were analyzed in 209 individuals with ASD and 298 demographically matched controls. A k-means clustering algorithm was utilized to obtain five dynamic states of functional connectivity of the rAI. The temporal properties, frequency properties, and meta-analytic decoding were first identified in TD group to obtain the characteristics of each rAI dynamic state. Multivariate analysis of variance was then performed to compare the functional connectivity patterns of the rAI between ASD and TD groups in obtained states. Significantly impaired connectivity was observed in ASD in the ventral medial prefrontal cortex and posterior cingulate cortex, which are two critical hubs of the default mode network (DMN). States in which ASD showed decreased connectivity between the rAI and these regions were those more relevant to socio-cognitive processing. From a dynamic perspective, these findings demonstrate partially impaired resting-state functional connectivity patterns between the rAI and DMN across states in ASD, and provide novel insights into the neural mechanisms underlying social impairments in individuals with ASD.Fundamental Research Funds for the Central Universities. Grant Numbers: 2672018ZYGX2018J079, ZYGX2016J187 National Institute for Health Research Cambridge Biomedical Resource Centre National Natural Science Foundation of China. Grant Numbers: 61533006, 61673089, 81771919, 81871432 Sichuan Science and Technology Program. Grant Number: 2018TJPT0016 Specialized Research Fund for the Doctoral Program of Higher Education of China. Grant Number: 2012018511002

    Topological Fractionation of Resting-State Networks

    Get PDF
    Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks

    Altered Brain Signal Variability in Patients With Generalized Anxiety Disorder

    Get PDF
    Generalized anxiety disorder (GAD) is characterized by a chronic, continuous symptom of worry and exaggerated startle response. Although functional abnormality in GAD has been widely studied using functional magnetic resonance imaging (fMRI), the dynamic signatures of GAD are not fully understood. As a vital index of brain function, brain signal variability (BSV) reflects the capacity of state transition of neural activities. In this study, we recruited 47 patients with GAD and 38 healthy controls (HCs) to investigate whether or not BSV is altered in patients with GAD by measuring the standard deviation of fMRI signal of each voxel. We found that patients with GAD exhibited decreased BSV in widespread regions including the visual network, sensorimotor network, frontoparietal network, limbic system, and thalamus, indicating an inflexible brain state transfer pattern in these systems. Furthermore, the correlation between BSV and trait anxiety score was prone to be positive in patients with GAD but negative in HCs. The opposite relationships between BSV and anxiety level in the two groups indicate that the brain with moderate anxiety level may stay in the most stable rather than in the flexible state. As the first study of BSV in GAD, we revealed extensively decreased BSV in patients with GAD similar to that in other mental disorders but with a non-linear relationship between BSV and anxiety level indicating a novel neurodynamic mechanism of the anxious brain
    • …
    corecore